Ta có \(\sin A=1,4-\cos A\)
Thế vào \(\sin^2A+\cos^2A=1\)ta được
\(25\cos^2A-35\cos A+12=0\)
\(\Leftrightarrow\orbr{\begin{cases}\cos A=0,8\\\cos A=0,6\end{cases}\Rightarrow\orbr{\begin{cases}\sin A=0,6\\\sin A=0,8\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\cot A=\frac{4}{3}\\\cot A=\frac{3}{5}\end{cases}}\)
giả sử tam giác ABC vuông tại A
đặt Ab=c; AC=b; BC=a, \(\widehat{B}\)=A
ta có:
\(sinA+cosA=\frac{b}{a}+\frac{c}{a}=\frac{b+c}{a}=\frac{7}{5}\)
=>b+c=7
=>(b+c)2=b2+2bc+c2=49
=>\(sin^2A+cos^2A=\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=\frac{25}{25}\)
=>b2+c2=25
ta có:
(b+c)2-b2-c2=49-25
2bc=24
bc=12
ta có: b.c=12; b+c=7
=> 3.4=4.3=1.12=12.1=2.6=6.2
mà b+c=7=> b=4,c=3 hoặc b=3,c=4
=> cot A= 4/3 hoặc 3/4