\(A=1+3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{2015}\)
\(\Rightarrow2A=3^{2015}-1\)
Lại có \(3^{2015}-1=3^{2012}\cdot3^3-1=\left(3^4\right)^{503}\cdot27-1=81^{503}\cdot27-1=\left(...1\right)\cdot27-1=\left(...7\right)-1=\left(...6\right)\)
\(\Rightarrow A=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A có chữ số tận cùng là 3