Vì \(58:4=14\) (dư\(2\))nên \(58\)có thể viết thành dạng \(4k+2\)
Từ đó: \(33^{58}\)thành \(33^{4k+2}=33^{4k}+33^2\)
Vì \(33^{4k}\)có chữ số tận cùng là 1
và \(33^2=1089\)có chữ số tận cùng là 9
nên \(33^{58}\)có chữ số tận cùng là 1+9=10
Vậy Chữ số tận cùng của \(33^{58}\)là 0