\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3\times12}=\frac{3y}{4\times12}=\frac{4z}{5\times12}=\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}\)\(=\frac{49}{49}=1\Rightarrow\)x=18,y=16,z=15
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
=> \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số băng nhau ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)\(=\frac{12x+12y+12z}{18+16+15}=\frac{12.\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
Từ \(\frac{12x}{18}=12\)=>x=18
Từ \(\frac{12y}{16}=12\)=>y=16
Từ\(\frac{12z}{15}=12\)=>z=15
Vạy x=18;y=15;z=16