Đặt \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=k\)
Áp dụng TC DTSBN ta có : \(k=\frac{2\left(x+y+z\right)+1+2-3}{x+y+z}=2\)
\(\Rightarrow y+z+1=2x;x+z+2=2y;x+y-3=2z;x+y+z=\frac{1}{2}\)
Từ \(y+z+1=2x\Leftrightarrow x+y+z+1=3x\Leftrightarrow\frac{1}{2}+1=3x\Rightarrow x=\frac{1}{2}\)
Từ \(x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Rightarrow y=\frac{5}{6}\)
Từ \(x+y-3=2z\Leftrightarrow x+y+z-3=3z\Leftrightarrow\frac{1}{2}-3=3z\Rightarrow z=-\frac{5}{6}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)