Ta có:
\(x^2-6x+y^2-10y=27\)
<=> \(x^2-2.y.3+9+y^2-2.y.5+25-9-25=27\)
<=> \(\left(x-3\right)^2+\left(y-5\right)^2=61\)
<=> \(\left(x-3\right)^2+\left(y-5\right)^2=5^2+6^2\)
Do x, y nguyên dương
=> x-3 >-3; y-5 >-5
TH1: \(\hept{\begin{cases}\left(x-3\right)^2=5^2\\\left(y-5\right)^2=6^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=5\\y-5=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=11\end{cases}}\)(tm)
TH2: \(\hept{\begin{cases}\left(x-3\right)^2=6^2\\\left(y-5\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=6\\y-5=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=10\end{cases}}\)(tm)