Đặt \(d=\left(1-3n,2n-3\right)\).
Suy ra \(\hept{\begin{cases}1-3n⋮d\\2n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2-6n⋮d\\6n-9⋮d\end{cases}}\Rightarrow\left(2-6n\right)+\left(6n-9\right)=-7⋮d\)
\(\Rightarrow\orbr{\begin{cases}d=1\\d=7\end{cases}}\).
Để \(\frac{1-3n}{2n-3}\)là phân số tối giản thì \(d=1\).
\(d\ne7\Rightarrow1-3n\ne7k\Leftrightarrow n\ne\frac{1-7k}{3},\left(k\inℤ\right)\).