tìm các số tự nhiên thỏa mãn \(\left(2^a+1\right)\left(2^a+2\right)\left(2^a+3\right)+2.6^b=992\)
tìm tất cả các cặp số tự nhiên ( a ; b ) thỏa mãn : \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)\left(3^a-5\right)\left(3^a-6\right)=2016^b+20159\)
giúp mik nhé mik tick cho thank
cho a,b,c là các số thỏa mãn \(\left(a+1\right)^2+\left(b+2\right)^2+\left(c+3\right)^2\le2010\). Tìm min
\(A=ab+b\left(c-1\right)+c\left(a-2\right)\)
Tìm số tự nhiên n thỏa mãn :
\(a,5\left(2-3n+42+3n\right)\ge0\)
\(b, \left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le1,5\)
Cho a,b,c là các số thỏa mãn \(\left(a+1\right)^2+\left(b+2\right)^2+\left(c+3\right)^2\le2010\)
Tìm Min: A= ab+b(c-1)+c(a-2)
Cho a, b, c là các số tự nhiên thỏa mãn \(\left(2a^2-b\right)^2+\left(3b^2-a\right)^2+c^2-12a^2b^2-2ab-2=-4a^3-6b^3-\frac{1}{c^2}\)
Chứng minh rằng \(\left(a-b\right)\) và \(\left(2a+2b+1\right)\) đồng thời là các số chính phương
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
cho a, b, c là các số thực dương thỏa mãn a + b + c =1
Tìm MaxM= \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3.
\(CMR:abc\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\le8\)