Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phạm an

) Tìm các số tự nhiên a và b biết:

a.b = 360 và BCNN(a; b)  = 60.

 

Nguyễn Tường Vy
15 tháng 7 2022 lúc 10:51

tham khảo nhé!!!!

BCNN(a,b) . ƯCLN(a,b) = a.b

Mà BCNN(a,b) = 60

            a.b = 360

=> ƯCLN(a,b) = 360 : 60 = 6

   Đặt a = 6m, b = 6n ( m,n thuộc N  ;  (m,n) = 1 )

=> 6m.6n = 360

<=> 36mn = 360

=> mn = 10

   Ta có bảng sau:

 m  1   2   5  10
 n  10   5    2    1
 a  6  12  30  60
 b  60  30  12  6

  Vậy (a,b) \in∈{ (6,60) ; (12, 30) ; (30,12) ; ( 60,6)}

Hà Thy
15 tháng 7 2022 lúc 10:51

ƯCLN(a.b)=360:60=6 ta có a= 6.m và b=6.n với ƯCLN(m,n)=1

Mặt khác a.b=360 nên 6.m.6.n=360 suy ra m.n=10

Do m, n là nguyên tố cùng nhau nên:

- Khi m=2 và n=5 thì a=12 và b=30

- Khi m=5 và n=2 thì a=30 và b=12

Vậy các số tự nhiên đó là: a=12; b=30 hoặc a=30; b=12


Các câu hỏi tương tự
benhutnhat
Xem chi tiết
Trần Ngọc Thảo Ly
Xem chi tiết
Harry Potter
Xem chi tiết
Lê Huỳnh Đức
Xem chi tiết
Đinh Thị Trúc Ngân
Xem chi tiết
Nguyễn Đoan Trang
Xem chi tiết
Pham Dinh Nghia
Xem chi tiết
Bùi Quang Khánh
Xem chi tiết
Thái Kim Huỳnh
Xem chi tiết
Trần Tuấn Anh K21B
Xem chi tiết