Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Hằng Giang

Tìm các số thực dương a, b, c thỏa mãn \(c\ge0\)

CMR: \(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+4\left(\frac{c}{c+a}\right)^2\ge\frac{3}{2}\)

Kiệt Nguyễn
17 tháng 7 2020 lúc 9:17

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 7 2020 lúc 11:03

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
17 tháng 7 2020 lúc 11:18

Đọc tài liệu thầy Công Lợi rồi đào lên gáy làm gì thế em :)

By AM - GM inequalities we have:

\(\left(\frac{a}{a+b}\right)^2+\frac{1}{4}\ge\frac{a}{a+b}\)

\(\left(\frac{b}{b+c}\right)^2+\frac{1}{4}\ge\frac{b}{b+c}\)

\(\left(\frac{c}{c+a}\right)^2+\frac{1}{4}\ge\frac{c}{c+a}\)

So now:

\(LHS\ge\frac{a}{a+b}+\frac{b}{b+c}+\frac{4c}{c+a}=\frac{1}{1+\frac{b}{a}}+\frac{1}{1+\frac{c}{b}}+\frac{4}{1+\frac{a}{c}}\)

Lemma:\(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}};xy\ge1\)

Then:\(LHS\ge\frac{2}{1+\sqrt{\frac{b}{a}\cdot\frac{c}{b}}}+\frac{4}{1+\frac{a}{c}}=\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\)

We need prove that:

\(\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\ge3\)

Biến đổi tương đương là ra

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Đặng Bảo Trâm
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phạm Thái Hà
Xem chi tiết