Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:
\(2\left(y+z\right)=x\left(yz-1\right)\)
1) Tìm các số x , y biết: 2x2 - 2xy + 5y2 - 2x - 2y + 1 =0
2) Cho các số thực dương a, b thỏa mãn a + b = 1. Tìm GTNN của biểu thức \(B=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
1. Tồn tại hay không 5 số nguyên \(a;b;c;d;e\) thỏa mãn đẳng thức
\(a^2+b^2=\left(a+1\right)^2+c^2=\left(a+2\right)^2+d^2=\left(a+3\right)^2+e^2\)
2. Cho các số nguyên dương \(a;b;c;d\) thỏa mãn \(\hept{\begin{cases}a^2+1=bc\\c^2+1=ad\end{cases}}\)
Chứng minh \(b+c=3a\)
3. Cho tập hợp \(A=\left\{1;2;3;...;2017\right\}.\) Có bao nhiêu tập hợp con của A sao cho tổng bình phương các phần tử của tập hợp con đó là số lẻ?
Tìm tất cả các số nguyên dương a thỏa mãn đẳng thức
\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)
với số nguyên n bất kì cho trước, CMR ko tồn tại số nguyên dương x thỏa mãn điều kiện \(x\left(x+1\right)=n\left(n+2\right)\)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)