\(y^2+2xy-3x-2=0.\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì Vế trái là số chính phương nên vế phải cx là số chính phương!! nhưng trong trường hợp này VP ko thế nào là số chính phương đc!!
=> x+1=0 hoặc x+2=0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=-2\Rightarrow y=2\end{cases}}}\)
Vậy...
Ta có \(y^2-2xy-3x-2=0\Leftrightarrow x^2+2xy+y^2=x^2+3x+2\) (*)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
VT của (*) là số chính phương; VP của (*) là tách của 2 số nguyên liên tiếp nên phải có 1 số bằng 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=2\Rightarrow y=2\end{cases}}}\)
Vậy có 2 cặp số nguyên (x;y)=(-1;1);(-2;2)