Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
tìm x,y nguyên biết
\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3.\)
Tìm các số x,y thỏa mãn: \(\left(x+1\right)^2+2xy+2y+y^2+\sqrt{2x-3y-3}=0\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Tìm tất cả các số thực thỏa mãn:
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Cho ba số thực x, y, z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Tìm GTLN của biểu thức \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
cho các số thực dương x,y,z thỏa mãn \(x+y+z=\dfrac{3}{xyz}\).CMR
\(\left(2x^2-xy+2y^2\right)\left(2y^2-yz+2z^2\right)\left(2z^2-zx+2x^2\right)\ge27\)
Cho x,y là số thực thỏa mãn x+y=1. Tính min P = \(2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\)