Ta có : 25 - y^2 = 9.(x - 2018)^2
Vì 9.(x - 2018)^2 ≥ 0 => 25-y^2 ≥ 0
Mặt khác :
9(x-2018)^2 chia hết cho 3.
=> 25 - y^2 chia hết cho 3
Do đó y^2 phải chẵn.
Vậy pt có nghiệm nguyên (2017;4)
Giải thích các bước giải:
Ta có : 25 - y^2 = 9.(x - 2018)^2
Vì 9.(x - 2018)^2 ≥ 0 => 25-y^2 ≥ 0
Mặt khác :
9(x-2018)^2 chia hết cho 3.
=> 25 - y^2 chia hết cho 3
Do đó y^2 phải chẵn.
Vậy pt có nghiệm nguyên (2017;4)
Giải thích các bước giải:
Tim các số nguyên x,y thỏa mãn :
1 / y - 2 = x / 2y
Tìm các số nguyên x,y thỏa mãn :25-y^2=8(x-2016)^2
cho x,y là các số nguyên dương thỏa mãn x+2y/x+y=2018/2017
cho x,y là các số nguyên dương thỏa mãn x+2y/x+y=2018/2017
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
tìm các số nguyên x,y thỏa mãn:9/xy-1/y=2+3/x
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tim x,y thuoc Z biet 25-y^2=9(x-2018)^2
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018