x nguyên, y nguyên
=> x+y, xy nguyên
Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1995⋮3\)
=> \(\left(x+y\right)^3⋮3\)
vì 3 là số nguyên tố
=> x+y chia hết cho 3(2)
=>\(\left(x+y\right)^3⋮9\) và 3xy(x+y) chia hết cho 9
=> 1995 chia hết cho 9 vô lí
Vậy nên không tồn tại x, y nguyên thỏa mãn
Ta có: \(x^2-y^2=2002\Leftrightarrow\left(x-y\right)\left(x+y\right)=2002\)
Vì x=\(\frac{\left(x+y\right)+\left(x-y\right)}{2}\in Z\)
=> (x+y)+(x-y) là số chẵn
TH1: x+y là số chẵn, x-y là số chẵn
=> (x+y) (x-y) chia hết cho 4
=> 2002 chia hết cho 4 vô lí
TH2: x+y là số lẻ, x-y là số lẻ
=> (x-y)(x+y) là một số lẻ
=> 2002 là số lẻ vô lí
Vậy ko tồn tại x, y thỏa mãn