đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)
Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)
\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.
Suy ra trong p,q có 1 số = 2
Không mất tính tổng quát, giả sử p=2
\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)
Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)
Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)
Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.
Do đó q=3.
(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)
\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.
Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)
\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)
\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.
Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).
\(\Rightarrow\)Có 1 số không chia hết cho 4.
Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.
\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)
P/S: Bài dài viết lại mỏi quá.