\(\text{#}\)\(m.ánh\)
\(a=\dfrac{4n+1}{2n-1}\)\(\text{∈ Z ⇔ 4 n + 1 ⋮ 2 n − 1 ( n ∈ Z )}\)
Vì \(2 n − 1 ⋮ 2 n − 1\)
\(⇒ 2 . ( 2 n − 1 ) ⋮ 2 n − 1\)
\(⇒ 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 4 n + 1 − 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 3 ⋮ 2 n − 1 hay 2 n − 1 ∈ Ư ( 3 ) = ( 1 ; 3 ; − 1 ; − 3 )\)
Lập bảng gt :
\(2n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(1\) | \(2\) | \(0\) | \(-1\) |
\(TMDK \) | \(TMDK \) | \(TMDK \) | \(TMDK \) |
Vậy \(n\text{∈}\left\{1;2;0;-1\right\}\)