\(n-10⋮n+3\Leftrightarrow\left(n+3\right)-13⋮n+3\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow n\in\left\{-16;-4;-2;10\right\}\)
a) n+3-13 divisible by n+3
Because n+3 divisible by n+3
=> 13 divisible by n+3
=> n+3 is the divisor of 13
=> n+3 = 1;-1;13;-13
=> n=-2-4;10;-16
Thus n=-2;-4;10;-16
b) Similar prove.
\(n-7⋮2n+1\Rightarrow2\left(n-7\right)⋮2n+1\Leftrightarrow\left(2n+1\right)-15⋮2n+1\)
\(\Rightarrow15⋮2n+1\Rightarrow2n+1\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow n\in\left\{-1;-2;-3;-8;0;1;2;7\right\}\)
Thử lại ta được các số nguyên n thỏa mãn là -1;-2;-3;-8;0;1;2;7(Tuy ko loại trường hợp nào nhưng câu này bắt buộc phải thử lại nhé)
b) n-7 divisible by 2n+1
=> 2n-14 divisible by 2n+1
=> 2n+1-15 divisible by 2n+1
=> 15 divisible by 2n+1
=> 2n+1 is the divisor of 15
=> 2n+1=-1;-3;-5;-15;1;3;5;15
=> Find n
Finally, retry the value n because 2n-14 divisible by 2n+1 but n-7 not sure divisible by 2n+1