Lời giải:
$4x+19=3^a, 2x+5=3^b$
$\Rightarrow 3^a-19=2(3^b-5)$
$\Rightarrow 3^a=2.3^b+9$
Hiển nhiên với $3^a>9\Rightarrow a>2$
Nếu $b=1$ thì: $3^a=2.3+9=15$ (loại)
Nếu $b=2$ thì $3^a+2.3^2+9=27\Rightarrow a=3$ (tm)
Nếu $b>2$ thì:
$3^a-2.3^b-9=0$
$\Rightarrow 3^{a-2}-2.3^{b-2}-1=0$
$\Rightarrow 3^{a-2}-2.3^{b-2}=1$
Điều này vô lý do $3^{a-2}-2.3^{b-2}\vdots 3$ với mọi $a,b>2$, còn $1$ không chia hết cho $3$.