Cho m và n là các số nguyên dương thỏa mãn 10(m2+1)=n2+1 tại m2+1 là số nguyên tố. Tìm số cặp (m;n)
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Nếu m,n,p là các số nguyên dương thỏa mãn m+\(\frac{1}{n+\frac{1}{p}}\)=\(\frac{17}{3}\). Tìm n
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
Tìm các số nguyên dương n thỏa mãn: 8\(^n\) − 1 là một số nguyên tố
Tìm tất cả các số nguyên dương n thỏa mãn n+1 và 3n+6 là các số lập phương,đồng thời 2n+5 là số nguyên tố.
tìm số nguyên a thỏa mãn đẳng thức a(m+p)= 5(m+n) và \(\frac{25}{21}.\left(p-n\right)\left(2m+n+p\right)=\left(m+p\right)^2\)với m,n,p là những số dương và n#p
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.
Tìm tất cả số nguyên dương m,n thỏa mãn điều kiện : n^2 + n + 1 = ( m^2 + m - 3 ) ( m^2 - m + 5 )