Cho a,b là các số nguyên dương thoả mãn \(\frac{a^2+b^2}{ab}\) là một số nguyên. Tính giá trị của biểu thức \(\frac{a^2+b^2}{ab}\)
Cho a,b là các số nguyên dương thoả mãn \(\frac{a^2+b^2}{ab}\)là một số nguyên. Tính giá trị của biểu thức \(\frac{a^2+b^2}{ab}\)
Cho a,b là các số nguyên dương thoả mãn \(\frac{a^2+b^2}{ab}\) là một số nguyên. Tính giá trị của biểu thức \(\frac{a^2+b^2}{ab}\)
Cho các số nguyên dương a;b;c nguyên tố cùng nhau thoả mãn:
(a+b)c=ab . Chứng minh rằng a+b là số chính phương .
a/ Tìm x, y cặp số nguyên không âm (x,y) thoã mãn 3^x-y^3=1
b/ Cho a, b, c thoả mãn a+b+c=0.
Chứng minh N=1-(ab+2c^2)(bc+2a^2)(ca+2b^2) là số dương
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Tìm x,y nguyên dương thoả mãn x^2+8y và y^2+8x là các số chính phương
Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
1. Tìm a,b là các số nguyên dương thỏa mãn (a+b+1)2-2a+2b là số chính phương
2. Tìm a và b là các số nguyên dương thỏa mãn (a2-b2)=10b+9
THÁCH CÁC BẠN LÀM ĐƯỢC ĐẤY!!!!!!
Làm được thì giúp nhanhhhhhhh lên nha