thực hiện phép tính \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}...\frac{30}{62}.\frac{31}{64}\)
tìm a,b,c không âm,thỏa mãn đồng thời 3 điều kiện a+3c=2014,a+2b=2015,a+b+c có giá trị lớn nhất
Tìm a biết 3 số a,b,c\(\ne0\)thỏa mãn a+2b+3c=72 và \(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}\)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
1) Cho các số dương a và b thỏa mãn điều kiện a100+b100=a101+b101=a102+b102
Chúng minh: \(\frac{a+b}{ab}=\frac{a^2+b^2}{a^2b^2}\)
2) Cho a,b,c là các số khác 0 thỏa mãn điều kiện \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\)
Tính: (a-b)3+(b-c)3+(c-a)3
Các số a,b,c,d thỏa mãn điều kiện
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và \(a+b+c+d\ne0\)
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn
các số a,b,c thỏa mãn điều kiện \(\frac{a}{2}\)=\(\frac{b}{3}\); \(\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49