Ta có \(\frac{2n+1}{2n-3}\) \(=\frac{2n-3+4}{2n-3}=1+\frac{4}{2n-3}\)
Để phân số \(\frac{2n+1}{2n-3}\) nguyên thì \(\frac{4}{2n-3}\) nguyên
=> 4 \(⋮\) 2n-3
hay 2n-3 \(\in\) Ư (4)={1;2;4;-1;-2;-4}
Ta có bảng sau
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | / | / | 1 | / | / |
Vậy n \(\in\) {2;1}