\(a)\dfrac{5x+4}{x^2+1}=0\)
\(\Rightarrow5x+4=0\)
\(\Rightarrow x=-\dfrac{4}{5}\)
Vậy \(A=0\Leftrightarrow x=-\dfrac{4}{5}\)
\(b)\dfrac{5x+4}{x^2+1}>0\)
Do \(x^2+1>0\forall x\)
\(\Rightarrow5x+3>0\)
\(\Rightarrow x>-\dfrac{4}{5}\)
Vậy \(A>0\Leftrightarrow x>-\dfrac{4}{5}\)
\(c)\dfrac{5x+4}{x^2+1}< 0\)
Do \(x^2+1>0\forall x\)
\(\Rightarrow5x+4< 0\)
\(\Rightarrow x< -\dfrac{4}{5}\)
Vậy \(A< 0\Leftrightarrow x< -\dfrac{4}{5}\)