tìm các giá trị của m để hàm số
\(y=mx^2-2\left(m-15\right)x+3-m\)
đồng biến trên khoảng (2;9)
Cho hàm số y=f(x) = 4x^2+ 6x-5 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×). b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]
tìm tất cả các giá trị của tham số để hàm số 2 y=mx^2-(m^2+1)x+3 đồng biến trên (1;dương vô cùng)
Tìm tất cả các giá trị của tham số m để tập xác định của hàm số
y = m x - 2 - x + 1 là một đoạn trên trục số.
A. m<-2
B. m>-2
C. m>2
D. m<2
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2}-1}\)xác định trên (0;1)
Cho hàm số y=f(x)= -3x^2+10x-4 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×) b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]
Tìm m để hàm số y = m x + 2 luôn nghịch biến trong khoảng xác định của nó.
A. m > 0
B. m < 0
C. m = 0
D. m > -2
y= \(\dfrac{mx}{\sqrt{x-m+2}+1}\)
a, Tìm tập xác định của hàm số theo tham số m
b, Tìm m để hàm số có tập xác định trên (0;1)
cho hàm số y= \(\frac{2x-1}{\sqrt{mx^4+mx^3+\left(m+1\right)x^2+mx+1}}\).Hỏi có bn giá trị nguyên của m để hàm số xác định với mọi x thuộc R.