Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2019\right)+2019=2019\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(0+1+2+...+2019\right)=0\)( có 2020 chữ x )
\(\Leftrightarrow2020x+2039190=0\)
\(\Leftrightarrow x=-1009,5\)
Ta có : \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2019\right)+2019=2019\)
\(\Rightarrow x+x+1+x+2+...+x+2019=0\)
\(\Rightarrow2020x+\left(1+2+3+...+2019\right)=0\)
\(\Rightarrow2020x+\frac{2019.2020}{2}=0\)
\(\Rightarrow2020x+2039190=0\)
\(\Rightarrow2020x=-2039190\)
\(\Rightarrow x=1009,5\)
Vậy \(x=1009,5\)