Gọi 3 p/s tối giản cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)
Theo bài ra ta có:\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\left(1\right)\)
\(a:c:e=5:7:11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
Đặt các tỉ số trên=p\(\Rightarrow a=5p;c=7p;e=11p\left(2\right)\)
\(b:d:f=\frac{1}{\frac{1}{4}}:\frac{1}{\frac{1}{5}}:\frac{1}{\frac{1}{6}}=4:5:6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt các tỉ số trên=q\(\Rightarrow b=4q;d=5q;f=6q\left(3\right)\)
Từ (1) và (2) và (3)
\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)
\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right).\frac{p}{q}=\frac{1883}{120}\)
\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)
Do đó \(\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8};\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10};\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\)