Theo bất đẳng thức Cô-Si \(a^2+\frac{1}{4}\ge a,b^2+\frac{1}{4}\ge b\to\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\)
\(\ge\left(a+b+\frac{1}{2}\right)\left(a+b+\frac{1}{2}\right)=\left(a+b+\frac{1}{2}\right)^2\) Dấu bằng xảy ra khi và chỉ khi \(a=b=\frac{1}{2}.\)
Áp dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy,\) với \(x=a+\frac{1}{4},y=b+\frac{1}{4}\) ta được
\(\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right).\) Dấu bằng xảy ra khi và chỉ khi \(a+\frac{1}{4}=b+\frac{1}{4}\Leftrightarrow a=b.\)
Vậy vế trái lớn hơn hoặc bằng vế phải. Do đó mà các dấu bằng xảy ra, từ đây ta được \(a=b=\frac{1}{2}.\)