Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Quang Hùng

Tìm \(a,b\ge0\) thỏa mãn \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)

Thầy Giáo Toán
21 tháng 9 2015 lúc 20:02

Theo bất đẳng thức Cô-Si \(a^2+\frac{1}{4}\ge a,b^2+\frac{1}{4}\ge b\to\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\) 

\(\ge\left(a+b+\frac{1}{2}\right)\left(a+b+\frac{1}{2}\right)=\left(a+b+\frac{1}{2}\right)^2\)  Dấu bằng xảy ra khi và chỉ khi \(a=b=\frac{1}{2}.\)

Áp dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy,\) với \(x=a+\frac{1}{4},y=b+\frac{1}{4}\) ta được

\(\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right).\) Dấu bằng xảy ra khi và chỉ khi \(a+\frac{1}{4}=b+\frac{1}{4}\Leftrightarrow a=b.\)

Vậy vế trái lớn hơn hoặc bằng vế phải. Do đó mà các dấu bằng xảy ra, từ đây ta được \(a=b=\frac{1}{2}.\)


Các câu hỏi tương tự
Vo Trong Duy
Xem chi tiết
Ayakashi
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Le Trang Nhung
Xem chi tiết
Khánh Nguyễn
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Harry James Potter
Xem chi tiết
Siêu Quậy Quỳnh
Xem chi tiết