324535 +3544365=
bạn
mẫn nhi huỳnh tham khảo nha
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/ (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c= [(-c)(-a)(-b)]/abc=-1
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8
Tìm các số a, b, c, d biết rằng:
a: b: c: d = 2: 3 : 4: 5 và a + b + c + d = -42
Tìm a,b,c biết: abc:11=a+b+c
Đọc câu sau : A B C A B C B C A A B C A A B C A B C A B C A C B A B A B A B A B A B A B ^ C A C A C A A C A C
Và so sánh : 1 + 1 x 2 với 1/1 + 1/1 x 2/2 và với 1/1/1 + 1/1/1 x 2/2/2 và cả 1/1/1/1 + 1/1/1/1 x 2/2/2/2
( Lưu ý : Dấu " / " là dấu chia ; Dấu " x " là dấu nhân )
PTĐTTNT:\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-b-a\right)-c\left(b-c\right)\left(a-c\right)\)
\(=3abc+a^3-a^2b-a^2c+b^3-b^2a-b^2c+c^3-c^2b-c^2a-\left(abc-bc^2-c^2a+c^3\right)\)
\(=2abc+a^3-a^2b-a^2c+b^3-b^2c-b^2a\)
\(=\left(a^3+a^2b-a^2c\right)-\left(2a^2b+2ab^2-2abc\right)+\left(ab^2+b^3-b^2c\right)\)
\(=a^2\left(a+b-c\right)-2ab\left(a+b-c\right)+b^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
Cho a,b,c là các số thực dương thỏa mãn \(a>b;a+b+c=4\)
Tìm GTNN của \(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Cho các số thực dương a,b,c thỏa mãn abc + a + b = 3ab. Tìm GTNN của biểu thức \(P=\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+c+1}}+\sqrt{\frac{a}{ac+c+1}}\)
cho a+b+c=0 và khác 0
rút gọn: A=a^2/a^2-b^2-c^2 +b^2/b^2-c^2-a^2 +c^2/c^2-a^2-b^2