\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
\(\Leftrightarrow\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+cx\left(x-1\right)}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{a\left(x^2-3x+2\right)+b\left(x^2-2x\right)+c\left(x^2-x\right)}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2\left(a+b+c\right)-x\left(3a+2b+c\right)+2a}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)
Sử dụng đồng nhất thức ta được \(\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\2a=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)