Ta có \(\left(ax+b\right).\left(x^2-cx+2\right)=ax^3-acx^2+2ax+bx^2-bcx+2b\)
\(=ax^3+\left(b-ac\right)x^2+\left(2a-bc\right)x+2b\)
Đồng nhất thức hệ số với \(x^3+x-2\)ta được :
\(a=1\);\(b-ac=0\);\(2a-bc=1\);\(2b=-2\)
Do đó \(a=1;b=-1\)có \(b-ac=0\Rightarrow c=\frac{b}{a}=-\frac{1}{1}=-1\)
Thay \(a=1;b=-1;c=-1\)vào \(2a-bc=1\)
thì \(2.1-\left(-1\right).\left(-1\right)=1\)(đúng)
Vậy \(a=1;b=-1;c=-1\)