\(pt\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)
ta có \(a^2+b^2+c^2=4a-2b+6b-14\)
\(\Leftrightarrow a^2+b^2+c^2-4a+2b-6c+14=0\)
\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6x+9\right)=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
Vì \(\left(a-2\right)^2\ge0\forall a\in R\)
\(\left(b+1\right)^2\ge0\forall b\in R\)
\(\left(c-3\right)^2\ge0\forall c\in R\)
Nên \(\hept{\begin{cases}a-2=0\Rightarrow a=2\\b+1=0\Rightarrow\\c-3=0\Rightarrow c=3\end{cases}b=-1}\)
Vậy a=2 ; b=-1 ; c=3