1) Cho x,y \(\in Z\); x,y > 1 thỏa mãn : \(4x^2y^2-7x+7y\)là số chính phương. CMR: x=y
2) Cho a,b,c \(\in Z\)thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).CMR:\)ab+bc+ca; ab,bc,ca đều là các số chính phương.
3) CMR: \(\forall n\in N\)thì số an = \(2^n+3^n+5^n+6^n\)đều không là số lập phương
4) Tìm \(x,y\in Z\)thỏa mãn \(x^3-y^3=285\left(x^2+y^2\right)\)
5) Cho \(a,b,c\in Z\)thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in Z\). CMR abc là 1 số lập phương
6) Tìm x,y \(\in Z\), \(x\le y\)để \(1+4^x+4^y\)là số chính phương
cho a,b là các số thực dương thỏa mãn a+b =<1.Tìm gtnn của A=1/(a^2+b^2)+1/2ab
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Bài 1: Cho a,b dương và \(2a+3b=ab\) Chứng minh rằng
\(a+b\ge5+2\sqrt{6}\)
Bài 2: Cho a,b dương và \(a+b=ab\) Tìm giá trị lớn nhất của
\(S=\frac{1}{a}+\frac{2}{a+b}\)
Bài 3: Cho a,b là các số dương. Tìm giá trị bé nhất của
\(S=\frac{a^2+b^2}{b^2+2ab}+\frac{b^2}{a^2+2b^2}\)
Bài 4: Cho ba số dương a,b,c thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)Chứng minh rằng
\(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\le\sqrt{3}\)
Bài 5: Cho ba số thực không âm x,y,z thỏa mãn \(x+y+z\ge3\)Chứng minh rằng
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho a, b là các số nguyên dương thỏa mãn \(\frac{a+1}{a}+\frac{b+1}{b}\in Z\). Gọi d là UCLN(a,b). CMR: \(d\le\sqrt{a+b}\)
cho a;b;c là các số thực dương thỏa mãn abc=1
Tìm Min của P=\(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\)
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$