Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Trình Hai Ẩn

Tìm a,b là các số nguyên dương sao cho a + b2 chia hết cho a2b-1

Tôi đã trở lại và tệ hại...
9 tháng 12 2015 lúc 19:49

mình ché trên mạng

 a. Ta xét a = 1 
=> a + b^2 = b^2 + 1 = (b^2 - 1) + 2 chia hết cho (b - 1) 
=> 2 chia hết cho (b - 1) 
=> b = 2 hoặc b = 3 

(a, b) = (1, 2), (1, 3) thỏa mãn 

b. ta xét a = 2 
=> a + b^2 = b^2 + 2 chia hết cho (4b - 1) 
=> 4b^2 + 8 chia hết cho (4b - 1) 
=> (4b^2 - b) + (b + 8) chia hết cho (4b - 1) 
=> (b + 8) chia hết cho (4b - 1) * 
Ta thấy * thỏa mãn khi b = 1 hoặc b = 3, với b > 3 ta có (4b - 1) > b + 8 
nên b + 8 không chia hết cho (4b - 1) 

Thử lại ta thấy (a, b) = (2, 1), (2, 3) thỏa mãn 

c. Ta xét a > 2 

không thể có b = 1 vì lúc đó ta có 
a^2 - a - 2 = a(a - 1) - 2 > 2*(2 - 1) - 2 = 0 
=> a + 1 < a^2 - 1 
=> a + 1 không thể chia hết cho a^2 - 1 

tiếp theo ta xét b >= 2 

c.1. xét a > b 
a*[a*(b - 1) - 1] >= a*[a*(2 - 1) - 1] = a*(a - 1) > 2*(2 - 1) = 2 > 1 
=> a^2(b - 1) - a > 1 
=> a^2b - 1 > a + a^2 > a + b^2 
=> a + b^2 không thể chia hết cho a^2b - 1 

c.2. xét a = b 
a^3 - 1 = (a - 1)(a ^2 + a + 1) > (a ^2 + a + 1) > a + a^2 
=> a + a^2 không chia hết cho a^3 - 1 

c.3 xét a < b 
"(a + b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + a^2*b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) + b*(a^2*b - 1) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) chia hết cho (a^2b - 1)" ** 
Ta cm ** sai 

(a + 1)(a^2 - 1) = (a + 1)(a^2 - a + a - 1) > (a + 1)(a^2 - a + 1) (do a - 1 > 1) = a^3 + 1 
=> b >= (a + 1) > (a^3 + 1)/(a^2 - 1) 
=> b(a^2 - 1) > a^3 + 1 
=> a^2b - 1 > a^3 + b 
vậy (a^3 + b) không thể chia hết cho (a^2b - 1) tức ** sai. 

*mina*

Thanh Hằng Đinh
11 tháng 1 2016 lúc 21:02

cách hay mà, sai đâu


Các câu hỏi tương tự
Phạm Tuấn Bách
Xem chi tiết
Hoàng Khánh Nhi
Xem chi tiết
Nguyễn Việt
Xem chi tiết
Trần Anh
Xem chi tiết
Nguyễn Huyền Trang
Xem chi tiết
Thảo My
Xem chi tiết
Cuồng Song Joong Ki
Xem chi tiết
Phương Linh
Xem chi tiết
Khôi Võ
Xem chi tiết