khi chia đa thức T(x) cho đa thức 2x2 - x - 3 được thương là 3x - 2 và còn dư. Tìm đa thức dư, biết rằng khi chia T(x) cho (2x - 3) và (x - 2) thì còn dư lần lượt là 12 và -14
1. Làm phép chia : (2x3 + 4x2 + 5x + 3) : (x + 1)
2. Tìm a để đa thức :
a. 2x3 - 3x2 + x + a chia hết cho x + 2
b. Đa thức x2 - 3x + 3 chia cho đa thức (x - a) được thương là x + 3 dư 21
c. Tìm dư của phép chia : F(x) = x9 + x4 + 1 cho G(x) = x3 + x
1. Làm phép chia : (2x3 + 4x2 + 5x + 3) : (x + 1)
2. Tìm a để đa thức :
a. 2x3 - 3x2 + x + a chia hết cho x + 2
b. Đa thức x2 - 3x + 3 chia cho đa thức (x - a) được thương là x + 3 dư 21
c. Tìm dư của phép chia : F(x) = x9 + x4 + 1 cho G(x) = x3 + x
Xác định hệ số a và b để đa thức (x^4-x^3-3x^2+ax+b)chia cho đa thức (x^2-x-2)được dư là (2x-3).Tìm x
Khi chia đa thức f(x) cho x+2 dư -4; chia cho x-3 dư 21; chia cho (x-3)(x+2) thì được thương là x2+4 và có dư, thì hạng tử tự do của đa thức f(x) là
Khi đa thức f(x) chia cho x+2 thì dư -4; chia cho x-3 thì dư 21; chia cho (x-3)(x+2) thì được thương là x^2 +4 và còn dư thì hạng tử tự do của đa thức f(x)..
tìm đa thức f(x), biết f(x)chia x-3 dư 7,chia cho x-2 dư 5, chia (x-2)(x-3)thì được thương là 3x và còn dư
Câu 7: Khi đa thức f(x) chia cho x + 2 thì dư -4; chia cho x - 3 thì dư 21; chia cho
(x-3)(x+2) thì được thương là x2 + 4 và còn dư thì hạng tử tự do của đa thức f(x) là bao
nhiêu?
Trả lời: ......
Cho 2 đa thức :
\(A\left(x\right)=2x^3+3x^2-x+a\)
\(B\left(x\right)=2x+1\)
a)Tìm đa thức thương và đa thức dư trong phép chia 2 đa thức A(x) và B(x)
b)Xác định a để đa thức A(x)luôn chia hết cho đa thức B(x)