Giả sử thương của phép chia này là bx2 + cx + d thì ta có
2x3 - 3x2 + x + a = (x + 2)(bx2 + cx + d)
<=> 2x3 - 3x2 + x + a = bx3 + x2(2b + c) + x(2c + d) + 2d
=> b = 2; c = -7; d = 15, a = 30
Vậy a = 30
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Áp dụng định lý Bezout:
Đa thức \(2x^3-3x^2+x+a\)chia hết cho x + 2
\(\Leftrightarrow f\left(-2\right)=0\)
\(\Leftrightarrow2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Leftrightarrow-16-12-2+a=0\)
\(\Leftrightarrow-30+a=0\Leftrightarrow a=30\)
Vậy a = 30 thì \(2x^3-3x^2+x+a\)chia hết cho x + 2