Cho hàm số y = x 3 - 3 x + 1 có đồ thị là (C).Giả sử (d) là tiếp tuyến của (C) tại điểm có hoành độ x = 2, đồng thời (d) cắt đồ thị (C) tại N, tìm tọa độ N.
A. N(1;-1)
B. N(2;3)
C. N(-4;-51)
D. N(3;19)
Cho hàm số y = x 3 + 3 x có đồ thị là (C) . M 1 là điểm trên (C) có hoành độ bằng 1. Tiếp tuyến tại điểm M 1 cắt (C) tại điểm M 2 khác M 1 . Tiếp tuyến tại điểm M 2 cắt (C) tại điểm M 3 khác M 2 . Tiếp tuyến tại điểm M n - 1 cắt (C) tại điểm M n khác M n - 1 ( n ≥ 4 , n ∈ ℕ )? Tìm số tự nhiên n thỏa mãn điều kiện y n - 3 x n + 2 21 = 0
A. n = 7
B. n = 8
C. n = 22
D. n = 21
Cho hàm số f ( x = x 3 + b x 2 + c x + d , C g x = x 2 - 3 x + 1
Với các số b, c, d tìm được ở bài 19, hãy:
a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = - 1 .
b) Giải phương trình f ' sin x = 0 .
c) tính lim x → 0 f ' ' sin 5 x + 1 g ' sin 3 x + 3
Cho hàm số y = x 3 - 2009 x có đồ thị là (C) . M 1 là điểm trên (C) có hoành độ x 1 = 1 . Tiếp tuyến của (C) tại điểm M 1 cắt (C) tại điểm M 2 khác M 1 , tiếp tuyến của (C) tại M 2 cắt (C) tại điểm M 3 khác M 2 ,.... Tiếp tuyến của (C) tại M n - 1 cắt (C) tại điểm M n khác M n - 1 (n=4;5;..), gọi ( x n ; y n ) là tọa độ điểm M n Tìm n để: 2009 x n + y n + 2 2013 = 0
A. n = 685
B. n = 679
C. n = 672
D. n = 675
Cho hàm số y = x3 – 3x2 + 1 (C). Tìm tổng hoành độ của hai điểm A; B trên đồ thị hàm số sao cho tiếp tuyến của đồ thị (C) tại A; B song song với nhau và A B = 4 2
A: 1
B: 2
C: 3
D: 5
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Cho các hàm số
f ( x ) = x 3 + b x 2 + c x + d ( C )
g ( x ) = x 2 − 3 x − 1 .
a) Xác định b, c, d sao cho đồ thị (C) đi qua các điểm (1; 3), (−1; −3) và f′(1/3) = 5/3 ;
b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ x 0 = 1 ;
c) Giải phương trình f′(sint) = 3;
d) Giải phương trình f′′(cost) = g′(sint);
e) Tìm giới hạn lim z → 0 f ' ' sin 5 z + 2 g ' sin 3 z + 3
Cho hàm số y = 2 x - 1 x - 1 C . Số điểm trên đồ thị (C) biết tiếp tuyến với đồ thị hàm số tại M cắt trục 0x; 0y lần lượt tại A; B sao cho AB = 82 OB
A : không tồn tại
B : 1
C : 2
D : 3
cho hàm số y=x^3+3x^2+1 có đồ thị (C)/.Gọi d là tiếp tuyến của C tại điểm A(1,5) và B la giao điểm thứ hai của d với C khi đó diện tích tam giác oab bằng