Ta có : \(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)
\(=\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+...+\frac{6}{31\cdot37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)
Vậy \(A=\frac{6}{37}\)