\(\overline{a5}\cdot\overline{3bc}=7850\)
\(\Leftrightarrow\left(10a+5\right)=\frac{7850}{\overline{3bc}}\Leftrightarrow5\cdot\left(2a+1\right)=\frac{7850}{\overline{3bc}}\Leftrightarrow2a+1=\frac{1570}{\overline{3bc}}\)
Mà: \(300\le\overline{3bc}\le399\)\(\Rightarrow3,91\le2a+1\le5,22\)2a+1 là số lẻ => 2a + 1 = 5 => a = 2
\(\Rightarrow\overline{3bc}=\frac{1570}{5}=314\)=> b = 1; c = 4
Vậy, a = 2; b = 1; c = 4.