\(\frac{1+3a}{12}=\frac{1+5b}{5b}=\frac{1+7a}{4b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{1+3a}{12}=\frac{1+5b}{5b}=\frac{1+7a}{4b}=\frac{\left(1+3a\right)+\left(1+7a\right)}{12+4b}=\frac{2+10a}{12+4b}=\frac{2.\left(1+5a\right)}{2.\left(6+2b\right)}=\frac{1+5b}{6+2b}\)
\(\Rightarrow\)5b = 6 + 2b
\(\Rightarrow\)3b = 6
\(\Rightarrow\)b = 2
Thay b = 2 vào : \(\frac{1+3a}{12}=\frac{1+5a}{5b}\)ta được :
\(\frac{1+3a}{12}=\frac{1+5b}{10}\)
\(\Rightarrow\left(1+3b\right).10=12.\left(1+5b\right)\)
\(\Rightarrow10+30b=12+60b\)
\(\Rightarrow30b=-2\)
\(\Rightarrow b=\frac{-1}{15}\)
Vậy ...
Đúng 0
Bình luận (0)