\(A=\dfrac{2}{1}+2+\dfrac{5}{1}+2+3+\dfrac{9}{1}+2+3+4+...+\dfrac{2041210}{1}+2+3+4+...+2020\)
\(A=\left(\dfrac{2+5+9+...+2041210}{1}\right)+2+3+4+...+2020\)
\(A=\left(\dfrac{\left(2041210-2\right)\div4+1}{1}\right)+2+3+4+...+2020\)
\(A=\dfrac{510304}{1}+\left(2+3+4+...+2020\right)\)
\(A=510304+\left(2020-2\right)+1\)
\(A=510304+2019\)
\(A=512323\)