Ta có: x + y + z = 6
=> ( x + y + z ) ^2 = 6^2
=> x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = 36 ( Hằng đẳng thức mở rộng )
=> 2 ( xy + xz + yz ) = 36 -12 ( vì x^2 + y^2 + z^2 = 12 )
=> xy +xz + yz = 12
Mà: x^2 + y^2 + z^2 = 12
=> x.x+y.y+z.z = x.y + x.z + y.z
=> x = y = z
Theo bài: x + y +z = 6
=> 3x = 6
=> x = 2
=> y = z = x = 2
Vậy:.......
Ở đoạn \(x^2+y^2+z^2=xy+yz+zx\\ \) chẳng có ai lại làm cộc lốc như bạn Truong_tien_phuong này cả
Mình đố bạn đi thi vòng trường thị như thế mà người ta cho bạn điểm tối đa đấy( Không được điểm tối da chứ ko phải là không cho điểm)
Sau đây mình xin góp ý:
\(x^2+y^2+z^2=xy+yz+zx\)\(\Rightarrow\)\(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Rightarrow\)\(2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Rightarrow\)\(x=y=z\)
Theo bài : x + y + z = 6 ... blah blah blah