a) \(2x=3y=7z\)
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)
\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)
b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)
a) 2x=3y=7z => \(\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)=\(\frac{3x-7y+5z}{3.21-7.14+5.6}=\frac{30}{-5}=-6\)
=> \(\frac{x}{21}\)= -6 => 21.( -6) = -126
\(\frac{y}{14}\)= -6 => 14.( -6) = -84
\(\frac{z}{6}\)= -6 => 6.( -6) = -36
Vậy x = -126
y = -84
z = -36
b) \(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x+y-z =10
áp dụng t/c dãy t/số bằng nhau. ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\frac{x}{8}\)= 2 => 8.2 = 16
\(\frac{y}{12}\)= 2 => 12.2 = 24
\(\frac{z}{15}\)= 2 => 15.2 = 30
vậy x = 16
y = 24
z = 30