không mất tính tổng quát, ta giả sử \(0\le x\le y\le z\),
==> \(x+y+z\le z+z+z=3z\)==> \(xyz\le3z\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy=1 thì x=y=1 ==> z = 2+z vô lý (loại)
Nếu xy=2 ,do x=<y nên x=1,y=2 ==> 2z=3+z ==> z=3 (thoả mãn )
Nếu xy=3 do x=<y nên x=1;y=3 ==> 3z = 4+z==> z= 2 (Thoả mãn )
Vậy (x,y,z)=(1,2,3); (1,3,2);(2,1,3),(2,3,1); (3,1,2);(3,2,1)
tớ công bố cách khác.
Không mất tính tổng quát,giả sử \(1\le x\le y\le z\)
Theo bài ra ta có:\(\frac{1}{yz}+\frac{1}{xy}+\frac{1}{zx}=1\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\ge1\)
\(\Rightarrow\frac{3}{x^2}\ge1\)
\(\Rightarrow x^2\le3\)
\(\Rightarrow x=1\)(vì \(x,y,z\)nguyên dương)
Thay vào đề bài,ta có:
\(yz=1+y+z\)
\(\Rightarrow yz-y-z=1\)
\(\Rightarrow\left(y-1\right)\left(z-1\right)=2\)
Do y;z nguyên dương \(\Rightarrow\hept{\begin{cases}y\ge1\\z\ge1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y-1\ge0\\z-1\ge0\end{cases}}\)
\(\Rightarrow\left(y-1\right)\left(z-1\right)=2\cdot1=1\cdot2\)
\(\Rightarrow\hept{\begin{cases}y=3\\z=2\end{cases};\hept{\begin{cases}y=2\\z=3\end{cases}}}\)
Vậy các cặp số nguyên dương (x;y;z) thỏa mãn là:\(\left(1;2;3\right)\)và các hoán vị của chúng.
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Mình nghĩ nếu mình nhắn sẽ hơi vô duyên nhưng cho mình hỏi về câu trả lời của bạn Trần Thị Loan ạ, ở TH3 thì khi tìm được kq thì z <y thì có hợp lí ko ạ tại nó trái với giả sử mà bạn ấy đưa gia, xin cảm ơn hihi