Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$