gọi 5 số tự nhiên đó là
A=n(n+1)(n+2)(n+3)(n+4)
ta thấy n+2,n+4 là 2 số chẵn liên tiếp mà tích của 2 số chẵn liên tiếp luôn chia hết cho 8=>A chia hết cho 8(1)
do trong 5 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 5 =>A chia hết cho 5(2)
do n,n+1,n+2 là 3 số tự nhiên liên tiếp
mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3=>A chia hết cho 3(3)
từ 1 ,2,3=> A chia hết cho 3,5,8<=>A chia hết cho bcnn(3,5,8)=120(đpcm)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)