Gọi chiều dài và chiều rộng của hình chữ nhật đó là a ; b
Gọi số cần thêm vào chiều rộng để khi chiều dài tăng thêm 3 đv mà tỉ số giữa chiều dài và chiều rộng ko đổi đổi là x
Theo đề bài ta có \(\frac{a}{b}=\frac{3}{2}\) và \(\frac{a+3}{b+x}=\frac{3}{2}\)
\(\Leftrightarrow2a=3b\) và \(2\left(a+3\right)=3\left(b+x\right)\)
\(\Leftrightarrow2a+6=3b+3x\)
Mà \(2a=3b\) \(\Rightarrow6=3x\)
\(\Rightarrow x=2\)
Vậy nếu chiều dài tăng thêm 3 đv mà tỉ số giữa chiều dài và chiều rộng ko đổi đổi thì chiều rộng phải tăng lên 2 đơn vị