Thấy B\(=\frac{x}{2}-\frac{1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
\(=\left(\frac{x-1}{2}+\frac{2}{x-1}\right)+\frac{1}{2}\)
Do x>1>0 nên ADBDDT Cauchy
\(\frac{x-1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\)
Do đó B\(\ge2+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi x=3
Nhầm B\(\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\cdot2=4\)
Do đó B\(\ge4+\frac{1}{2}=\frac{9}{2}\)