Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Le Thi Khanh Huyen

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)


Các câu hỏi tương tự
Le Thi Khanh Huyen
Xem chi tiết
Trần Kiều Thi
Xem chi tiết
Sherry
Xem chi tiết
huynh van duong
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Phạm Thị Thu Trang
Xem chi tiết
Hùng Quân Mai
Xem chi tiết
Đào Trọng Luân
Xem chi tiết
Trần Lê Quang Huy
Xem chi tiết