\(\frac{y}{xy-5x^2}-\frac{15x-25x}{y^2-25x^2}\)
ĐKXĐ : \(\hept{\begin{cases}x,y\ne0\\y\ne\pm5x\end{cases}}\)
\(=\frac{y}{x\left(y-5x\right)}-\frac{-10x}{\left(y-5x\right)\left(y+5x\right)}\)
\(=\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{-10xx}{x\left(y-5x\right)\left(y+5x\right)}\)
\(=\frac{y^2+5xy+10x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
\(\frac{y}{xy-5x^2}-\frac{-10x}{y^2-25x^2}=\frac{y^3-25x^2y}{\left(xy-5x^2\right)\left(y^2-25x^2\right)}-\frac{-10x^2y+50x^3}{\left(y^2-25x^2\right)\left(xy-5x^2\right)}\)
\(=\frac{y^3-25x^2y+10x^2y-50x^3}{\left(xy-5x^2\right)\left(y^2-25x^2\right)}=\frac{y^3-15x^2y-50x^3}{\left(xy-5x^2\right)\left(y^2-25x^2\right)}=\frac{y^3-50x^3}{x\left(y-5x\right)^2\left(y+5x\right)}\)
\(\frac{y}{xy-5x^2}-\frac{15x-25x}{y^2-25x^2}\)
\(=\frac{y}{x.\left(y-5x\right)}-\frac{15x-25x}{y^2-\left(5x\right)^2}\)
\(=\frac{y}{x.\left(y-5x\right)}-\frac{15x-25x}{\left(y-5x\right).\left(y+5x\right)}\)
\(=\frac{y.\left(y+5x\right)}{x.\left(y-5x\right).\left(y+5x\right)}-\frac{x.\left(15x-25x\right)}{x.\left(y-5x\right).\left(y+5x\right)}\)
\(=\frac{y^2+5xy}{x.\left(y-5x\right).\left(y+5x\right)}-\frac{15x^2-25x^2}{x.\left(y-5x\right).\left(y+5x\right)}\)
\(=\frac{y^2+5xy}{x.\left(y-5x\right).\left(y+5x\right)}+\frac{-\left(15x^2-25x^2\right)}{x.\left(y-5x\right).\left(y+5x\right)}\)
\(=\frac{y^2+5xy-15x^2+25x^2}{x.\left(y-5x\right).\left(y+5x\right)}\)
Đến đoạn này thì chịu.